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Abstract. A simple generating function for the 9j -symbols of the oscillator algebra is found.
On the basis of this function it is shown that corresponding 9j -symbols are expressed in terms
of polynomialsQpr(k,m) in two discrete variables which are orthogonal with respect to the
trinomial distribution. These polynomials depend on four independent parameters and can
be considered as a two-dimensional analogue of the Krawtchouk polynomials. Difference–
difference relations, the factorization chain, the duality property, and the Rodriguez formula for
these polynomials are obtained. It is shown that the polynomialsQpr(k,m) are eigenfunctions
of two commuting difference operators. These polynomials are also covariant with respect to
two commuting difference derivation operators. In a special symmetric case these polynomials
admit a simple factorized expression in terms of two distinct ordinary Krawtchouk polynomials.
In another special case we obtain an explicit expression of 9j -symbols in terms of the Appell
hypergeometric functionF1 in two variables.

1. Introduction

3nj -symbols of Lie algebras are very useful tools in numerous theoretical problems. The
importance of the study of such objects for pure mathematics and mathematical physics
can be illustrated by finding the Askey–Wilson polynomials [1] which are believed to be
the ‘most general’ orthogonal polynomials having nice properties. These polynomials were
discovered, in particular, on the basis of known properties of 6j -symbols for thesu(2)
algebra (concerning the connection between these objects see, e.g., [2–4]). Note that more
simple 3j -symbols (or Clebsch–Gordan coefficients) of thesu(2) algebra are expressed in
terms of the Hahn polynomials [4].

Suslov showed [5, 6] that more complicated 9j -symbols of thesu(2) algebra can be
expressed in terms of some orthogonal polynomials intwo discrete variables. However, an
explicit expression for such polynomials is yet unknown.

On the other hand, some classes of orthogonal multivariable polynomials (and generally
non-polynomial multivariable functions) are now being intensively studied with respect
to quantum integrable systems and combinatorical problems (see, e.g., [7–10]). See also
[11] for the connection of multivariate orthogonal polynomials with representations of Lie
algebras.

In this paper we show that 9j -symbols of the oscillator algebra (which can be considered
as a contraction of thesu(2) algebra) can be expressed in terms of Krawtchouk polynomials
in two discrete arguments. The main tool in our analysis will be a (perhaps new) generating
function for 9j -symbols. This generating function is obtained on the basis of our approach
to constructing 3nj -symbols [12]. In the particular case of the symmetric condition for the
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8338 A Zhedanov

representation parameters we arrive at the simple Krawtchouk polynomials in two variables
which have been studied by Prizva [13].

It is well known that both 3j - and 6j -symbols of the oscillator algebra are expressed
in terms of the ordinary Krawtchouk polynomials in one discrete variable [14, 15]. So our
result can be considered as a non-trivial extension of this result to the polynomials in two
variables.

The paper is organized as follows. In section 2 we recall necessary facts concerning
the oscillator algebra and its 9j -symbols. In section 3 we apply our method [12] to
the construction of a generating function for 9j -symbols. In section 4 we derive two
pairs of difference–difference relations and show that the oscillator 9j -symbols can be
expressed in terms of orthogonal polynomialsQpr(k,m;N) in two discrete variables,
which are orthogonal with respect to the trinomial distribution. In section 5 a factorization
technique for the polynomialsQpr(k,m;N) is proposed. This technique is also known in
the mathematical literature as the Darboux transformation method. On the basis of this
technique, we find two families of ladder operators allowing transformation of a polynomial
Qpr(k,m;N) to any polynomialQp′,r ′(k,m;N ′) with other arbitrary parametersp′, r ′ and
N ′. In particular, we construct a simple Rodriguez-type formula for these polynomials.
We also show that the polynomialsQpr(k,m;N) are eigenfunctions of two commuting
difference operators. In section 6 we propose another algebraic scheme based on the
observation that the operators introduced in section 4 form a linear (Lie) algebra under
commutations, whereas the corresponding Hamiltonians form nonlinear (quadratic) algebra.
This algebra plays a role of a hidden symmetry algebra of the eigenvalue problem for
the 9j -symbols (and corresponding polynomialsQpr(k,m;N)). In section 7 we derive the
duality property of the polynomialsQpr(k,m;N). In section 8 we consider a special choice
of the algebras’ parameters and find in this case an explicit expression for the polynomials
Qpr(k,m;N) in terms of the product of two ordinary Krawtchouk polynomials. In section 9
it is shown that in another special casep + r = N , the 9j -symbols admit an explicit
expression in terms of the Appell hypergeometric functionF1 in two variables.

2. Oscillator algebra, its addition rule and 9j-symbols

The oscillator algebra is described by the commutation relations (we adopt a notation which
is slightly different from the standard one [16])

[A−, A+] = a [A0, A±] = ±A± (2.1)

whereA0, A± are three generators,a is a positive constant. Note that if one considers
a in (2.1) as not a constant but rather as a fourth generator (commuting with the others)
we then obtain the standard Heisenberg Lie algebra with four generatorsA0, A±, a (see,
e.g., [17]). We prefer, however, to use the term ‘oscillator algebra’ in order to stress that
a is considered as an independent constant. (This can be achieved if one is restricted to
the representations of the Heisenberg algebra with a fixed value of the generatora.) The
Casimir operator of the oscillator algebra has the expression

Q = aA0− A+A−. (2.2)

Unitary irreducible representations of the algebra (2.1) are described by the basis|n; a; ρ〉
for which the action of the generators is described by

A0|n; a; ρ〉 = (n+ ρ)|n; a; ρ〉
A−|n; a; ρ〉 =

√
an|n− 1; a; ρ〉 (2.3)
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A+|n; a; ρ〉 =
√
a(n+ 1)|n+ 1; a; ρ〉

n = 0, 1, . . . (2.4)

where the representation parameterρ is defined by the value of the Casimir operator on the
given representation:Q|n; a; ρ〉 = ρa|n; a; ρ〉. The operatorsA− andA+ are Hermitian
conjugated whereas the operatorA0 is Hermitian given the representation (2.3). Note that
the ordinary Bose operators are a special case of the representations of the algebra (2.1)
with a = 1, ρ = 0.

Now consider the addition of two independent oscillator algebrasA
(i)

0 , A
(i)
± , ai and

A
(k)

0 , A
(k)
± , ak [16], whereai, ak are two different arbitrary positive parameters, and all the

operators with superscripti commute with the operators with superscriptk. The addition
rule has the form

A(ik)p = A(i)p + A(k)p aik = ai + ak (2.5)

where p = 0,± and (super)subscriptik indicates the new oscillator algebra which is
obtained by adding of the two algebras.

The Casimir operator of the resulting algebra has the expression

Qik = aiA(k)0 + akA(i)0 − A(i)+ A(k)− − A(k)+ A(i)− +Qi +Qk (2.6)

whereQi andQk are the Casimir operators of the adding algebras.
One can introduce the coupled basis|nik; aik, ρik〉 for the resulting algebra where the

notation is the same as in (2.3). From the adding rules (2.5) we have the obvious relation

nik + ρik = ni + nk + ρi + ρk (2.7)

where the coupled representation parameterρik takes the values

ρik = ρi + ρk + p p = 0, 1, 2 . . . . (2.8)

From (2.8) it is clear that the representation of the resulting algebra in coupled basis is
uniquely defined by fixing of the six parametersρi, ρk, ai, ak, nik andp.

The Clebsch–Gordan decomposition has the form

|nik; aik; ρik〉 =
∑
ni ,nk

C(nik, p; ni, ρi, nk, ρk)|ni; ai; ρi〉|nk; akρk〉 (2.9)

where the sum on the right-hand side of (2.9) is restricted by the conditionsni+nk = nik+p
and 06 ni 6 nik + p. The Clebsch–Gordan coefficients (CGC)C(nik, p; ni, ρi, nk, ρk)
can be easily expressed in terms of Krawtchouk polynomials (see, e.g., [14, 15]). In what
follows we need only an explicit expression for the ‘vacuum’ CGC

Cn(0) = C(0, p; n, ρi, p − ni, ρk) = (−1)n
√

a
p

i p!

a
p

ikn!(p − n)! (ak/ai)
n/2. (2.10)

In an analogous manner, one can consider adding three and more oscillator algebras leading
to 3nj -symbols. For example, for three algebras we have two possible addition schemes
((1⊕ 2) ⊕ 3) and (1⊕ (2⊕ 3)). For these two schemes we have the corresponding two
coupled bases|n12, a12, ρ12; ρ3, ρ123〉 and|n23, a23, ρ1, ρ23; ρ123〉, whereρ123 corresponds to
the representation parameter of the resulting algebra. Decomposition

|∗, a23, ρ23; ρ1, ρ123〉 =
∑
ρ12,ρ23

R(ρ12, ρ23; ρ1, ρ2, ρ3, ρ123)|∗, a12, ρ12; ρ3, ρ123〉 (2.11)

leads to the Racah coefficients (or 6j-symbols)R(ρ12, ρ23; ρ1, ρ2, ρ3, ρ123). (We denote by
∗ the first argument in the bases in (2.11) because the Racah decomposition is invariant
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under a change of the valuenik.) Note also that the sum on the right-hand side of (2.11) is
really reduced to one summation because of the restrictions

ρ12 = ρ1+ ρ2+ p12, ρ23 = ρ2+ ρ3+ p23

ρ123= ρ3+ ρ12+ p12,3 = ρ1+ ρ23+ p1,23 (2.12)

p12+ p12,3 = p23+ p1,23 = N = ρ123− ρ1− ρ2− ρ3. (2.13)

Hence, we can rewrite the Racah decomposition in the following concise form,

|∗;p23, p1,23〉 =
∑

p12,p12,3

Rp12p12,3(p23, p1,23)|∗;p12, p12,3〉 (2.14)

where the restrictions (2.13) are assumed and we omit for brevity the explicit dependence of
the Racah coefficients on the parametersρ1, ρ2, ρ3 andρ4. The Racah coefficients for the
oscillator algebra can also be expressed in terms of the Krawtchouk polynomials [14, 15].

Consider adding four different oscillator algebras. There are two different schemes:
((1⊕ 2)⊕ (3⊕ 4)) and((1⊕ 3)⊕ (2⊕ 4)). This leads to the decomposition

|∗;p13, p24, p13,24〉 =
∑

p12,p34,p12,34

Fp13,p24,p13,24
p12,p34,p12,34

|∗;p12, p34, p12,34〉 (2.15)

where the sum on the right-hand side of (2.15) is really reduced to a two-fold sum, because
of the restrictions

p12+ p34+ p12,34 = p13+ p24+ p13,24 = N = ρ1234− ρ1− ρ2− ρ3− ρ4. (2.16)

In what follows we redenote indices for brevity:p13 = p, p24 = q, p13,24 = r, p12 = k,
p34 = l, p12,34 = m. Then the decomposition (2.15) is rewritten as

|∗;p, q, r〉 =
∑
klm

F
pqr

klm |∗; k, l,m〉 (2.17)

with the restrictions

p + q + r = k + l +m = N. (2.18)

The Fano coefficients (9j -symbols)Fpqrklm can also depend on the representation parameters
ρi, i = 1, 2, 3, 4. We will see, however, that really these coefficients depend only on the
algebras parametersai . The dependence onρ1234 is replaced by a dependence on the value
of the integer parameterN , as is seen from (2.16).

3. Generating function

In this section we apply our method [12] for calculating the generating function of the
9j -symbols.

Consider the coherent states|z; a; ρ〉 for the oscillator algebra defined as eigenstates of
the annihilation operator

A−|z〉 = z|z〉. (3.1)

Hence, we have expansion coefficients in terms of the standard basis

〈n|z〉 = zn√
n!an

e−|z|
2/2a. (3.2)

In what follows we denote

|z1, z2〉 = |z1; a1; ρ1〉 ⊗ |z2; a2; ρ2〉
|z1, z2, z3〉 = |z1; a1; ρ1〉 ⊗ |z2; a2; ρ2〉 ⊗ |z3; a3; ρ3〉 etc.
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Using (3.2) and the ‘vacuum’ CGC (2.10) we easily find the following matrix element,

〈z1, z2|0; a12, ρ12〉 = µ12(p)

(
z2

a2
− z1

a1

)p
〈z1|01〉〈z2|02〉 (3.3)

where〈zi |0i〉 = e−|zi |
2/2ai and

µik(p) =
(
aiak

aik

)p/2 1√
p!
. (3.4)

Quite similarly, for two schemes of the adding of four algebras we can write down the
following matrix elements,

〈z1, z2, z3, z4|0;p, q, r〉 = µ12(p)µ34(q)µ12,34(r)

×
4∏
i=1

〈zi |0i〉
(
z2

a2
− z1

a1

)p (
z4

a4
− z3

a3

)q (
z3+ z4

a34
− z1+ z2

a12

)r
(3.5)

〈z1, z2, z3, z4|0; k, l,m〉 = µ13(k)µ24(l)µ13,24(m)

×
4∏
i=1

〈zi |0i〉
(
z3

a3
− z1

a1

)k (
z4

a4
− z2

a2

)l (
z2+ z4

a24
− z1+ z3

a13

)m
(3.6)

where we adopt the same notation as in (2.17).
From (2.17), (3.5) and (3.6) we immediately obtain the identity(

z2

a2
− z1

a1

)p (
z4

a4
− z3

a3

)q (
z3+ z4

a34
− z1+ z2

a12

)r
=
∑
klm

F̃
pqr

klm

(
z3

a3
− z1

a1

)k (
z4

a4
− z2

a2

)l (
z2+ z4

a24
− z1+ z3

a13

)m
(3.7)

whereF̃ pqrklm are defined as

F̃
pqr

klm =
µ13(k)µ24(l)µ13,24(m)

µ12(p)µ34(q)µ12,34(r)
F
pqr

klm . (3.8)

The identity (3.7) should be valid for all values of the coherent parameterszi . Using this
freedom we can choose the following parametrization,

z3

a3
− z1

a1
= a2a4a13

a1a3a24
u

z4

a4
− z2

a2
= 1

z2+ z4

a24
− z1+ z3

a13
= a4

a24
v (3.9)

whereu andv are two independent variables. Then the identity (3.7) becomes

9pr(u, v;N) = (1− v − αu)p(1+ βv − γ u)q(1+ u+ δv)r =
∑
klm

8
pqr

klmu
kvm (3.10)

whereα = a2/a1, β = a4/a2, γ = a4/a3, δ = (a1a4 − a2a3)/a2a5, a5 = a1 + a2 + a3 + a4

and

8
pqr

klm = F̃ pqrklm

(
a2a4a13

a1a3a24

)k (
a4

a24

)m (
−a24

a4

)p (
a24

a2

)q (
a12a34a24

a2a4a5

)r
(3.11)

are modified 9j -symbols. Note that the parametersα, β, γ and δ are not independent
because of the relationδ = β(γ − α)/(γ + γα + αβ + γαβ).

Formula (3.10) yields the generating function9pr(u, v;N) for the 9j -symbols of the
oscillator algebra. This formula can be exploited in order to obtain many useful relations
for 9j -symbols.
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4. 9j-symbols and orthogonal polynomials in two discrete variables

We now show that 9j -symbols can be expressed in terms of some orthogonal polynomials
in two discrete variables. Indeed, let us represent modified 9j -symbols in the form

8
pqr

klm = Qpr(k,m;N)80N0
klm (4.1)

whereQpr(k,m;N) are unknown functions. The ‘vacuum amplitude’80N0
klm is easily found

from (3.10) whenp = r = 0, q = N :

80N0
klm =

N !

k!l!m!
(−γ )k(β)m. (4.2)

Let us show thatQpr(k,m;N) are orthogonal polynomials in two discrete variables
k andm. For this goal we derive four difference–difference (recurrence) relations for the
functionsQpr(k,m;N).

The first recurrence relation follows from an obvious formula

(1− v − αu)9pr(u, v;N) = 9p+1,r (u, v;N + 1). (4.3)

Expanding the left- and right-hand sides of (4.3) in terms ofu andv and using (3.10) and
(4.1) we obtain the relation

L+(N)Qpr(k,m;N − 1) = NQp+1,r (k,m;N) (4.4)

whereL+(N) is the difference operator acting on the space of functions in two variablesk

andm by the formula

L+(N) = αk

γ
T −k −

m

β
T −m +N − k −m (4.5)

where we have introduced elementary shift operators defined asT ±k Q(k,m) = Q(k±1, m),
T ±m Q(k,m) = Q(k,m± 1).

Analogously from

(1+ u+ δv)9pr(u, v;N) = 9p,r+1(u, v;N + 1) (4.6)

we get another difference relation

M+(N)Qpr(k,m;N − 1) = NQp,r+1(k,m;N) (4.7)

where

M+(N) = − k
γ
T −k +

δm

β
T −m +N − k −m. (4.8)

Relations (4.4) and (4.7) are the first pair of the relations allowing to raise the parameter
N .

In order to get the second pair of such relations lowering the parameterN we start
with the easily verified differential relations for the generating function (in what follows by
9u(u, v) and9v(u, v) we mean derivatives with respect to the corresponding variables)

(δ − β − u(β + γ δ))9pr
u (u, v;N)− (1+ γ + v(β + γ δ))9pr

v (u, v;N)
+N(β + γ δ)9pr(u, v;N) = pε

1− v − αu9
pr(u, v;N)

= pε9p−1,r (u, v;N − 1) (4.9)
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and

(1+ β − u(αβ + γ ))9pr
u (u, v;N)+ (γ − α − v(αβ + γ ))9pr

v (u, v;N)
+N(αβ + γ )9pr(u, v;N) = rε

1+ u+ δv9
pr(u, v;N)

= rε9p,r−1(u, v;N − 1) (4.10)

where

ε = 1+ β + γ + δ(γ − α)+ αβ. (4.11)

From (4.9) and (4.10) we find the following recurrence relations

L−Qpr(k,m;N) = pε

N
Qp−1,r (k,m;N − 1) (4.12)

and

M−Qpr(k,m;N) = rε

N
Qp,r−1(k,m;N − 1) (4.13)

where the operatorsL− andM− are defined by

L− = γ (β − δ)T +k − β(1+ γ )T +m + β + γ δ (4.14)

M− = −γ (1+ β)T +k + β(γ − α)T +m + αβ + γ. (4.15)

From the relations (4.4), (4.7), (4.12) and (4.13) we can construct successively all the
functionsQpr(k,m;N) starting from the trivial vacuum functionQ00(k,m;N) = 1. It is
easily seen that then we indeed arrive at polynomials in two discrete variablesk andm
having degreep + r (as usual, by the degree of the polynomial in two variablesx andy
we mean the maximal values + t among all the monomialsxsyt in the expansion of the
polynomial).

In order to find the orthogonality property of the polynomialsQpr(k,m;N) we return
to the ‘true’ 9j -symbols having the analogous representation

F
pqr

klm = F 0N0
klm Ppr(k,m;N) (4.16)

where againPpr(k,m;N) are polynomials in two discrete argumentsk and m and the
‘vacuum amplitude’ can be calculated from (4.2), (3.11) and (3.8):

F 0N0
klm = (−1)k

√
N !

k!l!m!

(
a3a4

a13a34a24

)N/2
(a1a24/a3)

k/2(a2a13/a4)
l/2a

m/2
5 . (4.17)

The orthogonality property for the polynomialsPpr(k,m;N) follows from the corresponding
orthogonality properties of the 9j -coefficients,

〈p′q ′r ′|pqr〉 =
∑
klm

F
pqr

klm F
p′q ′r ′
klm = δpp′δrr ′ . (4.18)

Indeed, substituting (4.16) into (4.18) we get the orthogonality relation∑
km

wkmPpr(k,m;N)Pp′r ′(k,m;N) = δpp′δrr ′ (4.19)

where the weight function is

wkm = (F 0N0
klm )

2. (4.20)

It is easily seen from (4.17) that this weight function coincides with trinomial distribution

wkm =
(

N !

k!l!m!

)
bk1b

l
2b
m
3 l = N − k −m (4.21)
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where

b1 = a1a4

a13a34
= γ 2

(γ + αβ)(1+ γ )
b2 = a2a3

a24a34
= 1

(1+ γ )(1+ β) (4.22)

b3 = a3a4a5

a13a34a24
= β(γ (1+ α)+ αβ(1+ γ ))

(γ + αβ)(1+ γ )(1+ β) .
Obviouslyb1+ b2+ b3 = 1 and the normalization property is fulfilled∑

km

wkm = (b1+ b2+ b3)
N = 1. (4.23)

Hence the polynomialsPpr(k,m;N) are orthonormal polynomials which are orthogonal
with respect to the trinomial distribution. It is natural to call them Krawtchouk polynomials
in two discrete variables because the ordinary Krawtchouk polynomials (in one argument)
are orthogonal with respect to the binomial distribution [18].

The polynomialsQpr(k,m;N) introduced in (4.1) differ from the orthonormal
polynomialsPpr(k,m;N) by a simple factor,

Ppr(k,m;N) = BprQpr(k,m;N) (4.24)

where the coefficients

Bpr = (−1)p

√
N !

p!r!(N − p − r)!
(
a1a4a34

a2a3a12

)p (
a4a5

a3a12

)r
= (−1)p

√
N !

p!r!(N − p − r)!
(
β(1+ γ )

1+ α
)p (

γ (1+ α)+ αβ(1+ γ )
1+ α

)r
(4.25)

do not depend on the argumentsk,m. Hence the polynomialsQpr(k,m;N) are orthogonal
with respect to the same trinomial distribution (4.21) but they are not orthonormal. Instead
we have the following orthogonality relation for them,∑

km

wkmQpr(k,m;N)Qp′r ′(k,m;N) = δpp′δrr ′

B2
pr

(4.26)

where the weight functionwkm is given by (4.21). Note that the polynomialsQpr(k,m;N)
depend on four independent parametersα, β, γ andN and are normalized by the condition
Q00(k,m) = 1.

5. Factorization chain for the polynomialsQpr(k,m;N )

In this section we demonstrate that the well known factorization method [19, 20] (known
also as Darboux transformation chain) is a powerful tool for investigation of the polynomials
Qpr(k,m;N). In particular, we show that the polynomialsQpr(k,m;N) are eigenfunctions
of two commuting difference operators and, moreover, we find the Rodriguez formula for
these polynomials. For applications of the factorization method to the theory of orthogonal
polynomials in one variable see, for example, [21–24].

The operatorsL±(N) and M±(N) introduced in the previous section satisfy the
following relations,

L−L+(N) = L+(N − 1)L− + ε (5.1)

M−M+(N) = M+(N − 1)M− + ε (5.2)
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which indicate that these operators obey factorization chain conditions. Indeed (see, e.g.,
[19, 20]), the abstract algebraic Darboux (factorization) chain for the operator familyJ±(N)
depending on the integer parameterN can be written in the form

J−(N)J+(N)− ν(N) = J+(N − 1)J−(N − 1)− ν(N − 1) (5.3)

whereν(N) are some parameters.
It is seen from (5.1) and (5.2) that in our case we indeed have two factorization chains

for the operatorsL±(N) andM±(N) with the same parameters

ν(N) = εN (5.4)

(note that the operatorsL− andM− do not depend onN ).
Given the factorization chain (5.3), one can construct the family of Hamiltonians

H(N) = J+(N)J−(N)− ν(N) (5.5)

such that the operatorsJ±(N) play the role of Darboux transformations for these
Hamiltonians. Letψ be an eigenstate of the operatorH(N) with the eigenvalueλ:
H(N)ψ = λψ . Then the stateJ−(N)ψ is the eigenstate of the HamiltonianH(N−1) with
the sameeigenvalue:H(N − 1)J−(N)ψ = λJ−(N)ψ . Analogously, the operatorJ+(N)
transforms an eigenstate of the operatorH(N−1) into the eigenstate of the operatorH(N).
This ladder property of the factorization chain allows one to construct a whole family of
eigenstates of the HamiltonianH(N) starting from a given state which can be easily found
(for details see [19]).

In our case we have two families of Hamiltonians

H1(N) = L+(N)L− − εN and H2(N) = M+(N)M− − εN. (5.6)

It is easily verified that the operatorsH1(N) andH2(N) commute with one another (for
the same value ofN ). The eigenvalue problems for these Hamiltonians lead to thetwo
independent difference equationsfor the polynomialsQpr(k,m;N),

L+(N)L−Qpr(k,m;N) = εpQpr(k,m;N) (5.7)

M+(N)M−Qpr(k,m;N) = εrQpr(k,m;N). (5.8)

Explicitly, these difference operators can be written as

L+(N)L− = ασ1

γ
kT −k −

mσ1

β
T −m −

γ (β − δ)m
β

T +k T
−
m −

αβ(1+ γ )k
γ

T −k T
+
m

−γ (δ − β)(N − k −m)T +k − β(1+ γ )(N − k −m)T +m +Nσ1

+k(αβ − αδ − σ1)+m(γ + 1− σ1) (5.9)

whereσ1 = β + γ δ, and

M+(N)M− = −σ2

γ
kT −k +

mσ2δ

β
T −m −

γ δ(β + 1)m

β
T +k T

−
m −

β(γ − α)k
γ

T −k T
+
m

−γ (β + 1)(N − k −m)T +k + β(γ − α)(N − k −m)T +m +Nσ2

+k(β + 1− σ2)+m(δ(γ − α)− σ2) (5.10)

whereσ2 = γ + αβ.
Thus, the polynomialsQpr(k,m;N) are simultaneous eigenfunctions of the two

commuting difference operators (5.9) and (5.10).
Note that the relations (4.4), (4.12), (4.7) and (4.13) are nothing other than the explicit

form of the Darboux transformations for our polynomialsQpr(k,m;N) because these
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polynomials are eigenfunctions of the HamiltoniansH1,2(N). Repeating the action of these
transformations we obtain

L+(N + j1)L
+(N + j1− 1) . . . L+(N + 1)Qpr(k,m;N)
= (N + 1)j1Qp+j1,r (k,m;N + j1) (5.11)

M+(N + j2)M
+(N + j2− 1) . . .M+(N + 1)Qpr(k,m;N)

= (N + 1)j2Qp,r+j2(k,m;N + j2) (5.12)

where (a)j = a(a + 1) . . . (a + j − 1) denotes the standard Pochhammer symbol.
These extended relations allow one to construct a simple Rodriguez-type formula for
the polynomialsQpr(k,m;M). Indeed, obviouslyQ00(k,m;N) = 1 (for any values of
k,m,N). Hence from (5.11) and (5.12) we have the following formula:

M+(N+ j1+ j2)M
+(N+ j1+ j2− 1) . . .M+(N + j1+ 1)L+(N + j1) . . . L

+(N+ 1)(1)

= (N + 1)j1(N + j1+ 1)j2Qj1,j2(k,m;N + j1+ j2). (5.13)

The formula (5.13) is nothing other than the Rodriguez-type formula: it allows one to
construct any polynomialQpr(k,m;N) (because the parametersj1, j2, N are arbitrary
positive integers).

Some remarks should be made concerning the factorization scheme (5.1) and (5.2). In
general, the operatorsL±(N) andM±(N) belonging to two families do not commute with
one another. This leads, for example, to many other versions of the Rodriguez formula
(5.13) (these versions are obtained by changing the ordering of the operatorsL+ and
M+ in the string on the left-hand side of (5.13)). Nevertheless, the operatorsH1(N)

andH2(N) (Hamiltonians) commute with one another, as well as the operatorsL− and
M−. Moreover, as is easily seen, the operatorsL− andM− play the role of ‘difference
derivations’: they decrease the degree ofany polynomialin two variable by one. In this
respect, the polynomialsQpr(k,m;N) have almost the same properties as the classical
polynomials in one discrete argument (see, e.g., [4]): they satisfy difference equations,
difference–difference relations, have a simple Rodriguez-type formula, admit the Darboux
transformation chain and are covariant with respect to difference derivation.

We were not able to find a simple explicit expression for the polynomialsQpr(k,m;N);
however, in section 8 we show that for a special (symmetric) choice of the representation
parametersai there is a nice expression for these polynomials in terms of the ordinary
Krawtchouk polynomials in one variable.

6. Hidden symmetry algebra of the eigenvalue problem for the polynomials
Qpr(k,m;N )

In the previous section we introduced the operatorsL±(N) andM±(N) and showed that
they satisfy factorization chain relations (5.1) and (5.2). Note that these relations connect
the operators withdifferent valuesof the parameterN . In this section we consider algebraic
properties of the operatorsL± andM± belonging tothe samevalue of the parameterN .
For simplicity, we will omit the explicit dependence of these operators inN in this section.

Using explicit expressions (4.5), (4.14), (4.8) and 4.15) for these operators it is easily
verified that they form a linear (Lie) algebra under the commutations:

[L−,M−] = 0 [L−,M+] = −L− [L+,M−] = M−
[L+,M+] = L+ −M+ [L−, L+] = ε − L− [M−,M+] = ε −M−. (6.1)

Introduce the operatorsK1 = L+L− andK2 = M+M− which play the role of Hamiltonians
with eigenstates being just the polynomialsQpr(k,m;N) (see (5.9) and (5.10)). Then it is
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verified from (6.1) that commutators of the Hamiltonians with operatorsL± andM± also
form a closed butnonlinearalgebra:

[K1, L
−] = (L− − ε)L− [K1, L

+] = εL+ −K1 [K1,M
−] = M−L−

[K1,M
+] = −M+L− [K2, L

−] = L−M− [K2, L
+] = −L+M−

[K2,M
−] = (M− − ε)M− [K2,M

+] = εM+ −K2. (6.2)

First, note that from (6.2) we can again verify that the operatorsK1 andK2 do commute
with one another:

[K1,K2] = [K1,M
+M−] = M+M−L− −M+L−M− = 0. (6.3)

Moreover, introducing the operators

L̃+ = L+ −K1/ε M̃+ = M+ −K2/ε (6.4)

we get the commutation relations

[K1, L̃
+] = εL̃+ [K2, M̃

+] = εM̃+ (6.5)

from which it is seen that the operatorsL̃+ andM̃+ play the role of raising operators with
respect to the HamiltoniansK1 andK2. However, these operators do not allow one to
construct the eigenstates of the Hamiltonianssimultaneously. This means that if, sayψ , is
an eigenstate for the operatorsK1 andK2, then the operator̃L+ transformsψ into another
eigenstate of the operatorK1 but not of the operatorK2. Hence, the operators̃L+ and
M̃+ are not appropriate for constructing simultaneous eigenstates. Nevertheless, we can
introduce the operatorsA = L+M− andB = M+L− which are ‘true’ raising–lowering
operators for the simultaneous eigenstates. Indeed, one has commutation relations

[K1, A] = −[K2, A] = εA [K1, B] = −[K2, B] = −εB. (6.6)

Hence, the operatorA is a raising operator forK1 and a lowering operator forK2, and the
operatorB is a raising operator forK2 and a lowering operator forK1. Thus, if we have
an eigenstateψpr of the operatorsK1 andK2 (with eigenvaluesεp and εr, respectively)
we can construct other eigenstates of these operators by applying the operatorsA andB:

Aj1Bj2ψpr ∝ ψp+j1−j2,r+j2−j1. (6.7)

Note that obviouslyp + r = constant under the action of the operatorsA andB, so we
cannot obtain all possible eigenstates by this method starting from a given eigenstate.

The hidden symmetry nonlinear algebra (6.2) underlying the 9j -problem for the
oscillator algebra somewhat resembles other hidden symmetry algebras underlying
completely integrable many-particle systems (see, e.g., [9]).

7. Duality property

In this section we show that the polynomialsQpr(k,m;N) possess a duality property with
respect to exchanging{p, r} and {k,m}. This can be derived, for example, by means of
dual difference–difference relations for these polynomials. Denote

X = 1− v − αu Y = 1+ βv − γ u Z = 1+ u+ δv.
Then from the identities

(δ − β)X − (1+ δ)Y + (1+ β)Z = εu (7.1)

−(1+ γ )X + (1+ α)Y + (γ − α)Z = εv (7.2)
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we get the following relations for the polynomialsQpr(k,m;N)
γ (β − δ)Qp+1,r (k,m;N)− γ (1+ β)Qp,r+1(k,m;N)+ γ (1+ δ)Qpr(k,m;N)

= (kε/N)Qpr(k − 1, m;N − 1) (7.3)

−β(γ + 1)Qp+1,r (k,m;N)+ β(1+ α)Qp,r (k,m;N)+ β(γ − α)Qp,r+1(k,m;N)
= (mε/N)Qpr(k,m− 1;N − 1). (7.4)

Analogously from the identities

9pr
u (u, v;N) =

(
− αp
X
− γ q
Y
+ r

Z

)
9pr(u, v;N) (7.5)

9pr
v (u, v;N) =

(
− p
X
+ βq
Y
+ δr
Z

)
9pr(u, v;N) (7.6)

we get another pair of dual relations

(α/γ )pQp−1,r (k,m;N − 1)−(r/γ )Qp,r−1(k,m;N − 1)+ (N − p − r)Qpr(k,m;N − 1)

= NQpr(k + 1, m;N) (7.7)

and

(−p/β)Qp−1,r (k,m;N − 1)+(δr/β)Qp,r−1(k,m;N − 1)+(N − p − r)Qpr(k,m;N − 1)

= NQpr(k,m+ 1;N). (7.8)

Relations (7.3) and (7.4) are dual analogies of relations (4.12) and (4.13), whereas relations
(7.7) and (7.8) are dual analogies of relations (4.4) and (4.7). It is easily verified that dual
relations are obtained from initial ones by changing of the variables and parameters

k→ p m→ r β → γ γ → β α→ αβ

γ
. (7.9)

Taking into account the fact that

Q00(k,m;N) = Qpr(0, 0;N) = 1 (7.10)

we arrive at the important duality property for the polynomials themselves

Qpr(k,m;α, β, γ ;N) = Qkm

(
p, r; αβ

γ
, γ, β;N

)
(7.11)

where in (7.11) we have inserted the dependence of the polynomials on the parameters
α, β, γ .

The duality property (7.11) can be explained from the following considerations. The
9j -symbols satisfy the relation (2.17). From unitarity of this transformation and reality of
9j -symbols we obtain the dual decomposition

|∗; k, l,m〉 =
∑
pqr

F klmpqr |∗;p, q, r〉. (7.12)

On the other hand, decomposition (7.12) can be obtained from (2.17) by formally exchanging
A(2) ↔ A(3) of the oscillator algebras whereas the algebrasA(1) andA(4) remain unchanged.
This algebras’ exchange is equivalent just to exchange the parameters (7.9).

It is seen from (7.11) that ifβ = γ then the polynomialsQpr(k,m;N) areself-dual

Qpr(k,m;α, β, β;N) = Qkm(p, r;α, β, β;N). (7.13)

This self-duality property is also obvious from the addition scheme, because the condition
β = γ means thata2 = a3; hence, interchanging algebrasA(2) andA(3) have the same
representation parameters.
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Note that from duality relation (7.11) for the polynomialQpr(k,m;N) we can obtain
two independent recurrence relations for these polynomials which are dual analogies of the
difference equations (5.7) and (5.8). We will not write down these relations because they
are obvious.

8. Explicit expression for the symmetric case

In this section we consider a special ‘symmetric’ case when the algebras’ constants satisfy
the restriction

a1a4 = a2a3. (8.1)

Thenδ = 0, α = γ and the generating function becomes

9(u, v) = (1+ u)r(1− v − αu)p(1+ βv − αu)q. (8.2)

We can expand this function using the well known generating relation for the ordinary
Krawtchouk polynomials [18]

(1+ z)y(1− τz)x =
x+y∑
n=0

(
x + y
n

)
Kn(x; τ ; x + y)zn (8.3)

wherex and y are some positive integers,τ is a positive parameter and the Krawtchouk
polynomials in argumentx have the expression

Kn(x; τ ;M) = 2F1

(−x,−n
−M ; τ + 1

)
. (8.4)

Note an obvious duality property

Kn(x; τ ;M) = Kx(n; τ ;M). (8.5)

Now we can rewrite the generating function9(u, v) in the form

9(u, v) = (1+ u)r(1− αu)p+q(1− z/β)p(1+ z)q (8.6)

where

z = a3v

a1− a2u
. (8.7)

Then we have successively

9(u, v) = (1+ u)r(1− αu)p+q
p+q∑
m=0

(
p + q
m

)
(1− αu)−mKm(p; a1/a3;p + q)(βv)m

=
p+q∑
m=0

N−m∑
k=0

(
p + q
m

)(
N −m
k

)
Km(p; a1/a3;p + q)

×Kk(p + q −m; a2/a1;N −m)uk(βv)m. (8.8)

Thus from (8.8), (3.10) and symmetry property (8.5) of the Krawtchouk polynomials we
get the explicit expression for modified 9j -symbols:

8
pqr

klm = (a3/a1)
m

(
p + q
m

)(
k + l
k

)
Kp(m; a1/a3;p + q)Kp+q−m(k; a2/a1;N −m). (8.9)

From (4.1) and (4.2) we obtain the expression for the corresponding polynomials
Qpr(k,m;N):

Qpr(k,m;N)= (N − r)!(N −m)!
N !(N − r −m)! 2F1

(−m,−p
r − n ; a13/a3

)
2F1

(−k,−r
m−N ; a12/a2

)
. (8.10)
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It is seen from (8.10) (or (8.9)) thatQpr(k,m;N) are indeed polynomials in two discrete
argumentsk,m. These polynomials are orthogonal with respect to the weight function
(4.21) where in the symmetric case

b1 = a1a2

a12a13
= α

(1+ β)(1+ α)
b2 = a2

1

a12a13
= 1

(1+ α)(1+ β) (8.11)

b3 = a3

a13
= β

1+ β .

It is interesting to note that the Krawtchouk polynomials (8.10) in two discrete variables
were studied by Prizva [13], who also found a generating function similar to (8.2). These
polynomials can also be obtained by a limiting process from the Hahn polynomials in two
variables found by Dunkl [25].

Perhaps the polynomials (8.10) provide the firstexplicit example of two-variable
orthogonal polynomials connected with 9j -symbols. Surprisingly, a simple explicit
expression arises only for the symmetric case (8.1). The reason for this phenomenon is
yet unclear.

9. 9j-symbols and Appell hypergeometric function

In this section we return to the general case of the representation parametersai (i.e. δ 6= 0 in
(3.10)). When one of the parametersp, q, r is equal to zero then it is possible to express the
corresponding 9j -symbols in terms of the Appell hypergeometric function in two variables.

Indeed, consider, for example, the caseq = 0. Then obviouslyp + r = N . Assume
additionally that

k +m 6 r. (9.1)

Then we have the expansion

9(u, v) = (1− v − αu)p(1+ u+ δv)r

=
∑

n1,n2,j1,j2

(−αu)n1(−v)n2uj1(δv)j2p!r!

n1!n2!(p − n1− n2)!j1!j2!(r − j1− j2)!
(9.2)

where summation is restricted by the conditionsn1 + n2 6 p, j1 + j2 6 r. Introducing
discrete variablesk = n1+ j1 andm = n2+ j2 we can rewrite the sum (9.2) in the form

9(u, v) =
∑

n1,n2,k,m

p!r!(−α)n1(−1/δ)n2uk(δv)m

n1!n2!(k − n1)!(m− n2)!(p − n1− n2)!(r − k −m+ n1+ n2)!
. (9.3)

Under the restriction (9.1) we can transform (9.3) to

9(u, v) =
∑
k,m

r!uk(δv)m

k!m!(r − k −m)!
∑
n1,n2

(−k)n1(−m)n2(−p)n1+n2(−α)n1(−1/δ)n2

n1!n2!(1+ r − k −m)n1+n2

. (9.4)

The inner sum in (9.4) can be expressed as∑
n1,n2

(−k)n1(−m)n2(−p)n1+n2(−α)n1(−1/δ)n2

n1!n2!(1+ r − k −m)n1+n2

= F1(−p,−k,−m, 1+ r − k −m;−α,−1/δ) (9.5)
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whereF1(a, b, c, d; x, y) is the Appell hypergeometric function in two variablesx, y defined
by [26, vol 1]

F1(a, b, c, d; x, y) =
∑
n1,n2

(a)n1+n2(b)n1(c)n2x
n1yn2

n1!n2!(d)n1+n2

(9.6)

(generally the double sum in (9.6) is infinite; however if, as in our case,a = −M where
M is a positive integer then the sum is terminated).

Thus we have the explicit expression for the modified 9j -symbols in this special case:

8
p0r
klm =

r!δm

k!m!(r − k −m)!F1(−p,−k,−m, 1+ r − k −m;−α,−1/δ). (9.7)

The Appell function F1 has many nice properties (see, for example, the integral
representation in [26, vol 1]); however, in general it does not admit the expression in
terms of ‘more elementary’ functions of one variable. It would be interesting to find
an expression of 9j -symbols (in the general case of arbitraryp, q, r) in terms of more
complicated multivariable hypergeometric functions (say, Lauricella functions etc).

Note that the expression (9.7) is valid provided the restriction (9.1) is fulfilled. For
other regions of the parametersk andm one can also reduce the summation to the Appell
hypergeometric function; however, we will not write down the corresponding explicit
formulae here because they are obtained by almost the same procedure.

10. Conclusion

We have obtained a simple generating function for 9j -symbols of the oscillator algebra.
This allows one to reconstruct many important properties of the polynomialsQpr(k,m;N)
in two discrete variables: the weight function, the difference equation, the difference–
difference recurrence relations etc. We would like to mention an interesting property of the
polynomialsQpr(k,m;N): they are eigenfunctions of two commuting difference operators
K1 andK2 (f-las (5.7) and (5.8)). This resembles the situation with completely integrable
many-particle systems where the corresponding eigenfunctions can be expressed in terms of
some orthogonal polynomials in several variables. These polynomials are eigenfunctions of
a set of commuting differential or difference operators, one of them being the Hamiltonian
of the system (see, e.g., [7]).

In general, we did not find a simple explicit representation for the polynomials
Qpr(k,m;N). Nevertheless, in the symmetric casea1a4 = a2a3 a surprising simplification
emerges and the polynomialsQpr(k,m;N) can be written as a product of the two ordinary
Krawtchouk polynomials (formula (8.9)). The nature for such a simplification is puzzling,
becausea priori there are no arguments for why this symmetry condition is more preferable
among other possible restrictions.

There are other interesting questions connected with the general theory of orthogonal
polynomials (OPs) in two arguments. For example, it is well known that for the case of
one argument the weight function uniquely defines a system of a corresponding OP (up to
normalization constants). This is not the case for the OP in two (and more) arguments.
Indeed, the generic trinomial distribution (4.21) leads to quite different systems of OPs in
symmetric and non-symmetric cases (it is clear that the parametersb1, b2, b3 remain arbitrary
in the symmetric case (8.11) excepting the restrictionb1+b2+b3 = 1). This phenomenon is
well known in the general theory of OPs in two variables (see, e.g., [26, vol 2]). However,
it would be interesting to investigate under which relations the system of OPs becomes
uniquely defined.
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Existence of the factorization chain for the polynomialsQpr(k,m;N) described by the
operator relations (5.1) and (5.2) is another nice property of the corresponding polynomials
allowing an explicit construction of the Rodriguez-type formula. Note that recently some
multivariate OPs (appearing in the theory of integrable systems) were shown to possess a
Rodriguez formula (see, e.g., [8]); however, as far as we know, the factorization method
was not exploited with respect to multivariate polynomials.

Existence of the duality property (7.11) is also an important property, which has an
exact analogue for the ordinary Krawtchouk polynomials.

Another interesting aspect is the appearance of the Appell hypergeometric functionF1

in the expression of 9j -symbols for the special choiceq = 0. Note that in [27] 9j -symbols
of the SU(2) group were expressed in terms of some formal triple hypergeometric series.
One should expect that generic 9j -symbols for the oscillator algebra are also expressible in
terms of some triple hypergeometric series, because the oscillator algebra can be obtained by
a simple contraction from thesu(2) algebra [16]. We mention the interesting works [28, 29]
where some special classes of the Krawtchouk (and some other) multivariable polynomials
were expressed in terms of Lauricella polynomialsFB .

Note finally that in [30] and [31] some multivariate Racah polynomials were introduced
associated with the multiplicity free Racah coefficients for the Lie groupU(n). It would
be interesting to recognize possible connections with these objects. We believe, however,
that Krawtchouk polynomials connected with oscillator 9j -symbols are not related with
polynomials introduced in [30] and [31], because the latter are invariant under permutation
of variables whereas our Krawtchouk polynomials do not possess such a property.
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