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Abstract. A simple generating function for thej9%ymbols of the oscillator algebra is found.

On the basis of this function it is shown that correspondifigsgmbols are expressed in terms

of polynomials Q,,(k, m) in two discrete variables which are orthogonal with respect to the
trinomial distribution. These polynomials depend on four independent parameters and can
be considered as a two-dimensional analogue of the Krawtchouk polynomials. Difference—
difference relations, the factorization chain, the duality property, and the Rodriguez formula for
these polynomials are obtained. It is shown that the polynon@g|gk, m) are eigenfunctions

of two commuting difference operators. These polynomials are also covariant with respect to
two commuting difference derivation operators. In a special symmetric case these polynomials
admit a simple factorized expression in terms of two distinct ordinary Krawtchouk polynomials.
In another special case we obtain an explicit expressionjefydnbols in terms of the Appell
hypergeometric functiorfy in two variables.

1. Introduction

3nj-symbols of Lie algebras are very useful tools in numerous theoretical problems. The
importance of the study of such objects for pure mathematics and mathematical physics
can be illustrated by finding the Askey—Wilson polynomials [1] which are believed to be
the ‘most general’ orthogonal polynomials having nice properties. These polynomials were
discovered, in particular, on the basis of known properties josyinbols for thesu(2)

algebra (concerning the connection between these objects see, e.g., [2-4]). Note that more
simple 3j-symbols (or Clebsch—Gordan coefficients) of #h&2) algebra are expressed in
terms of the Hahn polynomials [4].

Suslov showed [5, 6] that more complicateg-&mbols of thesu(2) algebra can be
expressed in terms of some orthogonal polynomialsvimdiscrete variables. However, an
explicit expression for such polynomials is yet unknown.

On the other hand, some classes of orthogonal multivariable polynomials (and generally
non-polynomial multivariable functions) are now being intensively studied with respect
to quantum integrable systems and combinatorical problems (see, e.g., [7-10]). See also
[11] for the connection of multivariate orthogonal polynomials with representations of Lie
algebras.

In this paper we show thatj9symbols of the oscillator algebra (which can be considered
as a contraction of theu(2) algebra) can be expressed in terms of Krawtchouk polynomials
in two discrete arguments. The main tool in our analysis will be a (perhaps new) generating
function for 9j-symbols. This generating function is obtained on the basis of our approach
to constructing 8j-symbols [12]. In the particular case of the symmetric condition for the
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representation parameters we arrive at the simple Krawtchouk polynomials in two variables
which have been studied by Prizva [13].

It is well known that both 3- and 6/-symbols of the oscillator algebra are expressed
in terms of the ordinary Krawtchouk polynomials in one discrete variable [14, 15]. So our
result can be considered as a non-trivial extension of this result to the polynomials in two
variables.

The paper is organized as follows. In section 2 we recall necessary facts concerning
the oscillator algebra and itsjSymbols. In section 3 we apply our method [12] to
the construction of a generating function foyj-8ymbols. In section 4 we derive two
pairs of difference—difference relations and show that the oscillajesygnbols can be
expressed in terms of orthogonal polynomidls, (k, m; N) in two discrete variables,
which are orthogonal with respect to the trinomial distribution. In sechi@a factorization
technique for the polynomial® . (k, m; N) is proposed. This technique is also known in
the mathematical literature as the Darboux transformation method. On the basis of this
technique, we find two families of ladder operators allowing transformation of a polynomial
Qpr(k, m; N) to any polynomialQ,, ,-(k, m; N') with other arbitrary parameteys, ' and
N’. In particular, we construct a simple Rodriguez-type formula for these polynomials.
We also show that the polynomialg,,(k, m; N) are eigenfunctions of two commuting
difference operators. In section 6 we propose another algebraic scheme based on the
observation that the operators introduced in section 4 form a linear (Lie) algebra under
commutations, whereas the corresponding Hamiltonians form nonlinear (quadratic) algebra.
This algebra plays a role of a hidden symmetry algebra of the eigenvalue problem for
the 9j-symbols (and corresponding polynomigls, (k, m; N)). In section 7 we derive the
duality property of the polynomial®,,, (k, m; N). In section 8 we consider a special choice
of the algebras’ parameters and find in this case an explicit expression for the polynomials
Qpr(k, m; N) in terms of the product of two ordinary Krawtchouk polynomials. In section 9
it is shown that in another special caget+ r = N, the 9j-symbols admit an explicit
expression in terms of the Appell hypergeometric functignin two variables.

2. Oscillator algebra, its addition rule and 9j-symbols

The oscillator algebra is described by the commutation relations (we adopt a notation which
is slightly different from the standard one [16])

[A_,A{]=a [Ao, As] = £AL (2.1)

where Ag, Ay are three generatorg, is a positive constant. Note that if one considers

a in (2.1) as not a constant but rather as a fourth generator (commuting with the others)
we then obtain the standard Heisenberg Lie algebra with four gener&gors., a (see,

e.g., [17]). We prefer, however, to use the term ‘oscillator algebra’ in order to stress that
a is considered as an independent constant. (This can be achieved if one is restricted to
the representations of the Heisenberg algebra with a fixed value of the genejaftie
Casimir operator of the oscillator algebra has the expression

QO =aAo— A A_. (2.2)

Unitary irreducible representations of the algebra (2.1) are described by thehasip)
for which the action of the generators is described by

Aoln; a; p) = (n + p)ln; a; p)
A_|n; a; p) = an|n — 1; a; p) (2.3)
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Ayln;a; p) = am + Din + 1 a; p)

n=0,1,... 2.4)

where the representation parametdas defined by the value of the Casimir operator on the
given representationQ|n; a; p) = paln;a; p). The operatorsA_ and A, are Hermitian
conjugated whereas the operatty is Hermitian given the representation (2.3). Note that
the ordinary Bose operators are a special case of the representations of the algebra (2.1)
witha=1p=0.

Now consider the addition of two independent oscillator algebtgs AY, a; and
Ag‘), Ai‘), ai [16], whereaq;, a; are two different arbitrary positive parameters, and all the
operators with superscriptcommute with the operators with superscript The addition
rule has the form

A;,ik) = A;:) + A(pk) dir = a; + ay (25)

where p = 0,4+ and (super)subscriptk indicates the new oscillator algebra which is
obtained by adding of the two algebras.
The Casimir operator of the resulting algebra has the expression

Oik =AY + AP — APAY — AP AY + 0 + O (2.6)
where Q; and Q, are the Casimir operators of the adding algebras.

One can introduce the coupled bapis; air, pix) for the resulting algebra where the
notation is the same as in (2.3). From the adding rules (2.5) we have the obvious relation

Rik + pix = n; +ng + pi + pPr (2.7)
where the coupled representation paramegtetakes the values
Pik = Pi + px + P p=012.... (2.8)

From (2.8) it is clear that the representation of the resulting algebra in coupled basis is
uniquely defined by fixing of the six parametess ox, a;, ax, n;; and p.
The Clebsch—Gordan decomposition has the form

|nik; @ik pir) = Z C(nik, p; ni, Pis Nk, PR NG5 ais i) |k ax k) (2.9)
n;,ng
where the sum on the right-hand side of (2.9) is restricted by the conditjars, = n;+p
and 0< n; < ni + p. The Clebsch—Gordan coefficients (CGCln;y, p; ni, pi, 1k, Pr)
can be easily expressed in terms of Krawtchouk polynomials (see, e.g., [14, 15]). In what
follows we need only an explicit expression for the ‘vacuum’ CGC

al p!
ahn!(p —n)!
In an analogous manner, one can consider adding three and more oscillator algebras leading
to 3uj-symbols. For example, for three algebras we have two possible addition schemes
(l®2)®3) and (1@ (2 3)). For these two schemes we have the corresponding two

coupled baseBi1, a2, p12; p3, p123) aNd|nos, azs, p1, P23; P123), Wherepioz corresponds to
the representation parameter of the resulting algebra. Decomposition

C.(0) = C(0, p;n, pi, p —ni, pr) = (=1)" (ax/a)"?. (2.10)

I, azs, p23; p1, P123) = Z R(p12, P23; p1, P2, P3, P123)|*, A12, P12} P3, P123) (2.11)
P12, 023
leads to the Racah coefficients (or 6j-symbatp1o, 023; 01, 02, 03, P123). (We denote by
* the first argument in the bases in (2.11) because the Racah decomposition is invariant
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under a change of the valug,.) Note also that the sum on the right-hand side of (2.11) is
really reduced to one summation because of the restrictions

P12 = p1+ P2+ p12, P23 = P2 + p3 + P23
p123 = p3+ P12+ p123 = p1+ P23+ P1.23 (2.12)
P12+ p123 = pas+ p123= N = p123— p1— p2 — P3. (2.13)
Hence, we can rewrite the Racah decomposition in the following concise form,
|%; p23, p1,23) = Z Ry op12s (P23, P1,23)|%; P12, p123) (2.14)
P12,P123

where the restrictions (2.13) are assumed and we omit for brevity the explicit dependence of
the Racah coefficients on the parametersp,, p3 and ps. The Racah coefficients for the
oscillator algebra can also be expressed in terms of the Krawtchouk polynomials [14, 15].

Consider adding four different oscillator algebras. There are two different schemes:
(12 @Bd4)) and(1e3) ® (2@ 4)). This leads to the decompaosition

% pas. paas praaa) = Y FPOPEPRR|s pio pas, p1oaa) (2.15)
P12, P34, 12,34

where the sum on the right-hand side of (2.15) is really reduced to a two-fold sum, because
of the restrictions
P12+ p3a+ p123a = p13+ paa+ p1a2a = N = p123a— p1— P2 — pP3 — P4 (2.16)
In what follows we redenote indices for brevityiis = p, paa = g, p1324a = 1, p12 = k,
p3a =1, p123a = m. Then the decomposition (2.15) is rewritten as

l*; p,q,r) = ZF,S?;H; k,l,m) (2.17)

kim

with the restrictions

p+g+r=k+1l4+m=N. (2.18)
The Fano coefficients (9symbols) F/;!" can also depend on the representation parameters
oi,i = 1,2 3,4. We will see, however, that really these coefficients depend only on the

algebras parameters. The dependence gm»z4is replaced by a dependence on the value
of the integer parametéy, as is seen from (2.16).

3. Generating function

In this section we apply our method [12] for calculating the generating function of the
9j-symbols.

Consider the coherent statgsa; p) for the oscillator algebra defined as eigenstates of
the annihilation operator

A_lz) = zlz). (3.1)
Hence, we have expansion coefficients in terms of the standard basis

— Z” *\ZIZ/ZH
n|z) = e . 32
( | > ,—! - ( )

In what follows we denote

|z1, z2) = |z1; ag; p1) ® |z2; az; p2)
|21, 22, 23) = |z1; a1; p1) ® |22; az; p2) @ |z3; az; p3) etc
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Using (3.2) and the ‘vacuum’ CGC (2.10) we easily find the following matrix element,

p

< Z
(21. 2210; @12, p12) = p12(p) (2 - 1) (21/01) (22102) (3.3)

ar al

Where (Zl|0l> = e—lz,|2/2u, and
/2
aa\""* 1

& )Z( ) N 3.4
M= ) ! (3.4)

Quite similarly, for two schemes of the adding of four algebras we can write down the
following matrix elements,

(21, 22, 23, 2410; p, q, r) = p12(p)usa(q) pa2,34(r)

4 P q r
22 1 74 23 23tz2a 21+22

e (2-2) (28] (sre_staf o

i) az ax as  as aza a2
(21, 22, 23, 2al0; k, [, m) = paa(k) waa(l) L3 24(m)

4 3 ) (24 2\ (22424 z1+z3\"

< TT10) ( - ) (2- ) ( - ) (3.6)
i=1 as ax as a azqa ais

where we adopt the same notation as in (2.17).
From (2.17), (3.5) and (3.6) we immediately obtain the identity

(zz m)p <Z4 m)q <Z3+Z4 71 +22)r
a; a1) \as az azs aiz

_ ~oqr (23 21 (e 2\ (22424 z21+z3\"
_ZFklm — = — — — — — 8.7)
az ai as az a4 ais

klm

where F)" are defined as

. k l
Fk[;gn) — /'L13( )/1-24( )M13,24(m) Fk];:]nr (38)
ma2(p)psalq) n12,34(r)
The identity (3.7) should be valid for all values of the coherent parametendsing this

freedom we can choose the following parametrization,

73 21 4204413 4 22 22+z2a z1t+23 aa

as ax aiaszaza as az aza as aza

whereu andv are two independent variables. Then the identity (3.7) becomes
WP, v N) = (L= v =) (L fo — yu) A u +80) = 3 @iy (3.10)

klm

wherea = az/ai, B = as/az, y = as/as, § = (aras — azaz)/azas, as = a1 + az +az + as

and
k m r
P — Frar <a2a4a13> <a4> (_am)p (a24>q <a12a34a24> (3.11)
aiaszaza az4 as az azasas
are modified 9-symbols. Note that the parametersg,y and § are not independent
because of the relatioh= S(y — a)/(y + ya + aB + yap).
Formula (3.10) yields the generating functig” (1, v; N) for the 9j-symbols of the

oscillator algebra. This formula can be exploited in order to obtain many useful relations
for 9j-symbols.
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4. 9j-symbols and orthogonal polynomials in two discrete variables

We now show that §-symbols can be expressed in terms of some orthogonal polynomials
in two discrete variables. Indeed, let us represent modifiedy®nbols in the form

O = Q, (k, m; N)®INO (4.1)

whereQ,, (k, m; N) are unknown functions. The ‘vacuum amplitude®° is easily found
from (3.10) whenp =r = 0,9 = N:

N!
P = g VB (4.2)

Let us show thatQ,, (k, m; N) are orthogonal polynomials in two discrete variables
k andm. For this goal we derive four difference—difference (recurrence) relations for the
functions Q,,, (k, m; N).
The first recurrence relation follows from an obvious formula
(1—v—aw)¥” (u,v; N) = W’ (u,v; N + 1). (4.3)

Expanding the left- and right-hand sides of (4.3) in terms @ind v and using (3.10) and
(4.1) we obtain the relation

LY(N)Qpr(k,m; N —1) = NQpi1,(k,m; N) 4.4

whereL™(N) is the difference operator acting on the space of functions in two variables
andm by the formula
k
L+(N)=°LT,;—%T,;+N—k—m (4.5)
Y

where we have introduced elementary shift operators definé;f@ik, m) = Qkxt1, m),
Ty Ok, m) = Q(k,m £1).
Analogously from

A+ u+ V)W (u,v; N) = WP, v; N + 1) (4.6)

we get another difference relation

M+(N)Qpr(k7 m;N—1)=NQ, 1(k,m; N) 4.7
where
n kK ém___
M™(N)=—-T, +?Tm + N —k —m. (4.8)
14

Relations (4.4) and (4.7) are the first pair of the relations allowing to raise the parameter
N.

In order to get the second pair of such relations lowering the paramétere start
with the easily verified differential relations for the generating function (in what follows by
v, (u, v) and W, (u, v) we mean derivatives with respect to the corresponding variables)

(6= B —u(B+yd)UL @, v N) = (L+y +v(B + y8) WL (u, v; N)
FN(B+ YOV (v N) = W (u, 05 N)
= pe¥" M (u,v:N — 1) (4.9)
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and
A+B—uf+y)N¥) w,v;N)+ (y —a —v(@p+y)V) (u,v; N)

+N(ap + Y)W (u,v; N) = H;ii&)‘lf‘”’(u, v; N)

=reW” Y, v; N — 1) (4.10)

where

e=1+B+y+6(y —a)+ap. (4.12)
From (4.9) and (4.10) we find the following recurrence relations

L™ Qprtkmi N) = 220, 1, thomi N = D) (4.12)
and

M~ Qp (k. m; N) = % Qpr1lk.m; N — 1) (4.13)
where the operator6~ and M~ are defined by

L =yB-8)T—BA+WT, + B+ (4.14)

M~ = —y(l+ﬂ)Tk++,3()/ —oz)T,,‘f—i—aﬁ—i—y. (4.15)

From the relations (4.4), (4.7), (4.12) and (4.13) we can construct successively all the
functions Q,,, (k, m; N) starting from the trivial vacuum functio@oo(k, m; N) = 1. It is
easily seen that then we indeed arrive at polynomials in two discrete varialded m
having degreep + r (as usual, by the degree of the polynomial in two variablesnd y
we mean the maximal value+ r among all the monomials®y’ in the expansion of the
polynomial).

In order to find the orthogonality property of the polynomigls, (k, m; N) we return
to the ‘true’ 9j-symbols having the analogous representation

i = FkOIIXzOPpr(ka m; N) (4.16)

where againP,.(k,m; N) are polynomials in two discrete argumeritsand m and the
‘vacuum amplitude’ can be calculated from (4.2), (3.11) and (3.8):

N! asa N2 "
FONO = ()% s (araza/as)*(azass/as)'2ag’. (4.17)
k! l!m ! ai13a3aaz4

The orthogonality property for the polynomiats, (k, m; N) follows from the corresponding
orthogonality properties of thejScoefficients,

(P/f],V/|qu’) = Z F]SZIrka[,mq’r/ = 81}p’6rr’- (418)
kim
Indeed, substituting (4.16) into (4.18) we get the orthogonality relation
> "W Pypr(k, m N) Py (kms N) = 88,10 (4.19)
km
where the weight function is
Wikm = (FkO[I;;/;O)Z (420)

It is easily seen from (4.17) that this weight function coincides with trinomial distribution

N! .
Wi = (WW) bibhbs I=N—k—m (4.21)
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where
by = aag _ J/2
aizaza (v +af)A+y)
1
by = 23 _ (4.22)
azazs  (L+y)(1+B)
py— 930495 _ Bly(l+a)+ap(1+y))

aizamazs (v +af)AL+y)A+B)

Obviouslyb; + b, + b3 = 1 and the normalization property is fulfilled
> wiw = (b1 + b+ b)) =1, (4.23)
km

Hence the polynomials,,(k, m; N) are orthonormal polynomials which are orthogonal
with respect to the trinomial distribution. It is natural to call them Krawtchouk polynomials
in two discrete variables because the ordinary Krawtchouk polynomials (in one argument)
are orthogonal with respect to the binomial distribution [18].

The polynomials Q,,(k, m; N) introduced in (4.1) differ from the orthonormal
polynomials P, (k, m; N) by a simple factor,

Ppr(ka m; N) = Bperr(k»m;N) (424)
where the coefficients

B — (-1 N! aragaza\" [ asas \
pr p'ri(N — p — r)! \azazaiz asaz?

N! 1 P 1 1 d
— (—1) BA+y\ (vA+a)+ap(d+y) (4.25)
pir'(N —p —nr)! 1+ 1+«
do not depend on the argumettsn. Hence the polynomial®,, (k, m; N) are orthogonal

with respect to the same trinomial distribution (4.21) but they are not orthonormal. Instead
we have the following orthogonality relation for them,

Spp'Orr

Spp e’ (4.26)
B2,

> Wi Qpr (k. m: NYQ iy (k. m: N) =
km
where the weight functiow,, is given by (4.21). Note that the polynomials,, (k, m; N)
depend on four independent parameterg, y and N and are normalized by the condition

Qoolk, m) = 1.

5. Factorization chain for the polynomials Q. (k, m; IN)

In this section we demonstrate that the well known factorization method [19, 20] (known
also as Darboux transformation chain) is a powerful tool for investigation of the polynomials
0, (k,m; N). In particular, we show that the polynomiags,, (k, m; N) are eigenfunctions
of two commuting difference operators and, moreover, we find the Rodriguez formula for
these polynomials. For applications of the factorization method to the theory of orthogonal
polynomials in one variable see, for example, [21-24].

The operatorsL*(N) and M*(N) introduced in the previous section satisfy the
following relations,

L LY(N)=LT(N-1L +¢ (5.1)
M MY (N)=M"(N-DM +¢ (5.2)
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which indicate that these operators obey factorization chain conditions. Indeed (see, e.g.,
[19, 20)), the abstract algebraic Darboux (factorization) chain for the operator farmily)
depending on the integer paramedércan be written in the form

JT(N)JT(N) —v(N)=JT(N-1DJ (N—-1) —v(N -1 (5.3)

wherev(N) are some parameters.
It is seen from (5.1) and (5.2) that in our case we indeed have two factorization chains
for the operatord.*(N) and M*(N) with the same parameters

V(N) =¢eN (5.4)

(note that the operators~ and M~ do not depend o).
Given the factorization chain (5.3), one can construct the family of Hamiltonians

H(N) = JT(N)J~(N) — v(N) (5.5)

such that the operatord*(N) play the role of Darboux transformations for these
Hamiltonians. Lety be an eigenstate of the operatéif(N) with the eigenvaluex:
H(N)y = Ay, Then the statd ~(N)y is the eigenstate of the Hamiltoniagdh(N — 1) with
the sameeigenvalue:H (N — 1)J~(N)y = AJ(N)y. Analogously, the operataf*(N)
transforms an eigenstate of the operaiVv — 1) into the eigenstate of the operatdi(N).
This ladder property of the factorization chain allows one to construct a whole family of
eigenstates of the Hamiltoniaki (N) starting from a given state which can be easily found
(for details see [19]).

In our case we have two families of Hamiltonians

Hi(N)=L"(N)L™ —eN and Hy(N) = MY (N)M™ —¢N. (5.6)

It is easily verified that the operatof (N) and Ho(N) commute with one another (for
the same value olN). The eigenvalue problems for these Hamiltonians lead totwhe
independent difference equatiofts the polynomialsQ . (k, m; N),

L+(N)L_Qpr(ka m; N) ZEPQpr(k7 m; N) (57)

MY (NYM™ Q. (k,m; N) = er Qp,(k, m; N). (5.8)
Explicitly, these difference operators can be written as

— 1

LrvL = 2y = " VB M @B VR

Y B B Y

-y —B)(N —k — m)T,:r - BA+y)(N —k— m)Tn:r + Noj

+k(afp —ad —o1) +m(y +1—o01) (5.9)
whereo; = 8 + y$é, and
MM =~ kg 4 MO VOB DM PO K

Y B B Y
—yB+DIN —k—m)T;" + By —a)(N —k —m)T,} + No>
+k(B+1—02) +m@(y —a) —02) (5.10)

whereo, = y + af.

Thus, the polynomialsQ,,(k,m; N) are simultaneous eigenfunctions of the two
commuting difference operators (5.9) and (5.10).

Note that the relations (4.4), (4.12), (4.7) and (4.13) are nothing other than the explicit
form of the Darboux transformations for our polynomials,,(k, m; N) because these
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polynomials are eigenfunctions of the Hamiltoniaiis,(N). Repeating the action of these
transformations we obtain

LN+ joL™(N+ j1—=1)...LY(N + 1) Q) (k,m; N)

=WN+1;0p.,(k,m; N+ j1) (5.11)
MY(N+ j))M*(N+ jo—1)...M*(N +1)Q,, (k,m; N)

=(N+ 1)j2Q[7,r+j2(k7 m; N + jo) (512)
where (a); = a(@ + 1)...(a + j — 1) denotes the standard Pochhammer symbol.

These extended relations allow one to construct a simple Rodriguez-type formula for
the polynomialsQ,, (k, m; M). Indeed, obviouslyQoo(k, m; N) = 1 (for any values of
k,m, N). Hence from (5.11) and (5.12) we have the following formula:

M*(N+ ji+ jDM N+ ji+j2— 1 ... MY (N+ 1+ DLT(N + j1) ... LT (N+ D (D)
=(N+1D;(N+j1+1),0j.,k,m; N+ j1+ j2). (5.13)

The formula (5.13) is nothing other than the Rodriguez-type formula: it allows one to
construct any polynomialQ,,(k, m; N) (because the parameteys, j,, N are arbitrary
positive integers).

Some remarks should be made concerning the factorization scheme (5.1) and (5.2). In
general, the operatois® (N) and M*(N) belonging to two families do not commute with
one another. This leads, for example, to many other versions of the Rodriguez formula
(5.13) (these versions are obtained by changing the ordering of the opefatoesd
M™ in the string on the left-hand side of (5.13)). Nevertheless, the oper&igi¥)
and H,(N) (Hamiltonians) commute with one another, as well as the operdtorand
M~. Moreover, as is easily seen, the operatbrsand M~ play the role of ‘difference
derivations’: they decrease the degreeaal polynomialin two variable by one. In this
respect, the polynomial®,, (k, m; N) have almost the same properties as the classical
polynomials in one discrete argument (see, e.g., [4]): they satisfy difference equations,
difference—difference relations, have a simple Rodriguez-type formula, admit the Darboux
transformation chain and are covariant with respect to difference derivation.

We were not able to find a simple explicit expression for the polynon@g|sk, m; N);
however, in section 8 we show that for a special (symmetric) choice of the representation
parametersy; there is a nice expression for these polynomials in terms of the ordinary
Krawtchouk polynomials in one variable.

6. Hidden symmetry algebra of the eigenvalue problem for the polynomials
Qpr (k7 m; N)

In the previous section we introduced the operatbf§N) and M*(N) and showed that
they satisfy factorization chain relations (5.1) and (5.2). Note that these relations connect
the operators withlifferent valuef the parameteN. In this section we consider algebraic
properties of the operatos™ and M* belonging tothe samevalue of the parametew.
For simplicity, we will omit the explicit dependence of these operator¥ iim this section.

Using explicit expressions (4.5), (4.14), (4.8) and 4.15) for these operators it is easily
verified that they form a linear (Lie) algebra under the commutations:

[L-,M]=0 [L~, M) =—-L" (LY, M |=M"

(LT, MT) =L - M" [L-,LT]=e— L~ M~ MTl=e—-M". (6.1)
Introduce the operator&; = L*L~ andK, = M+ M~ which play the role of Hamiltonians
with eigenstates being just the polynomigls, (k, m; N) (see (5.9) and (5.10)). Then it is
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verified from (6.1) that commutators of the Hamiltonians with operafofsand M* also
form a closed buhonlinearalgebra:

[Ki,L7]=(L" —e¢)L~ (K1, LY] =Lt — K3 [Ki, M ] =ML
[K, M| =—-MTL™ [Ko, L] =L"M~ [Ko, LT] = —LTM~
[Ko, M =M~ —&)M~ [Ko, MT] =eM™ — K». (6.2)

First, note that from (6.2) we can again verify that the operakarand K, do commute
with one another:

[Ki, Kol =[Ky, MM 1 =M"M L™ —M*L M~ =0. (6.3)
Moreover, introducing the operators

Lt =L" —K/e Mt =M"—Ky/e (6.4)
we get the commutation relations

[Ki, L] =eL* [Ko, MT] = eM™ (6.5)

from which it is seen that the operatats and M+ play the role of raising operators with
respect to the Hamiltonian&; and K,. However, these operators do not allow one to
construct the eigenstates of the Hamiltoniaimultaneously This means that if, say, is

an eigenstate for the operataks and K», then the operatok* transformsy into another
eigenstate of the operatdf, but not of the operatork,. Hence, the operator* and

M+ are not appropriate for constructing simultaneous eigenstates. Nevertheless, we can
introduce the operatord = L*M~ and B = M*L~ which are ‘true’ raising—lowering
operators for the simultaneous eigenstates. Indeed, one has commutation relations

[Kl, A] = —[Kz, A] =c¢cA [Kl, B] = —[Kz, B] = —¢B. (66)

Hence, the operatot is a raising operator foK; and a lowering operator fak,, and the
operatorB is a raising operator foK, and a lowering operator foK;. Thus, if we have
an eigenstater,, of the operatorsk; and K> (with eigenvaluesp ander, respectively)
we can construct other eigenstates of these operators by applying the opdraimisB:

ARBIY e Yy ot jo iy (6.7)

Note that obviouslyp 4+ r = constant under the action of the operatdrand B, so we
cannot obtain all possible eigenstates by this method starting from a given eigenstate.

The hidden symmetry nonlinear algebra (6.2) underlying thep@blem for the
oscillator algebra somewhat resembles other hidden symmetry algebras underlying
completely integrable many-particle systems (see, e.g., [9]).

7. Duality property

In this section we show that the polynomials,, (k, m; N) possess a duality property with
respect to exchanginfp, r} and {k, m}. This can be derived, for example, by means of
dual difference—difference relations for these polynomials. Denote

X=1-v—oau Y=1+4+8v—yu Z=14+u+dv.
Then from the identities

B—-BX—-—A+8)Y+A+B)Z=c¢u (7.1)
—A+pPX+A4+a)Y+(y —a)Z =¢v (7.2)
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we get the following relations for the polynomiad3,, (k, m; N)
Y(B—=38)0pt1rk,m; N) —y(L+ B)Qp i1k, m; N) + y(1+8)Qpr(k, m; N)

= (ke/N)Q,r(k —1,m; N — 1) (7.3)
=By +DQps1,k,m; N) + B(A+ ) Q) (k,m; N) + B(y —a)Qp r41(k, m; N)
= (me/N)Q,-(k,m —1L; N — 1). (7.4)
Analogously from the identities
g Ny = =% YD T ey
WP (u, v; N) _< X v + Z)\If (u,v; N) (7.5)
ron oo Ny — (P PD T e
kIJf(u,v,N)_( X+Y+Z)\pr(u,v,N) (7.6)

we get another pair of dual relations
(a/yY)pQp-1,tk,m; N —1)—(r/y)Qpr-1tk,m; N —1) + (N — p —r)Qpr(k,m; N — 1)

=NQ,(k+1,m;N) (7.7)
and
(=p/B)Qp1.r (k. m; N = 1)+ 37/ B) Qpr—1k,m: N = D)+(N — p — ) Qpr(k, m; N — 1)
=NQp (k,m+ 1 N). (7.8)

Relations (7.3) and (7.4) are dual analogies of relations (4.12) and (4.13), whereas relations
(7.7) and (7.8) are dual analogies of relations (4.4) and (4.7). It is easily verified that dual
relations are obtained from initial ones by changing of the variables and parameters

k—p m-—r B—vy y — B a—)ﬁ. (7.9)
14

Taking into account the fact that
Qootk,m; N) = Q,,(0,0; N) =1 (7.10)
we arrive at the important duality property for the polynomials themselves

OQprk,m;a, B, y; N) = Qpm <p,r; % v, Bs N) (7.11)

where in (7.11) we have inserted the dependence of the polynomials on the parameters
o, B, Y.

The duality property (7.11) can be explained from the following considerations. The
9j-symbols satisfy the relation (2.17). From unitarity of this transformation and reality of
9j-symbols we obtain the dual decomposition

|%; k, 1, m) = Z F;jé’ﬂ*; D,q,7). (7.12)
pqr
On the other hand, decomposition (7.12) can be obtained from (2.17) by formally exchanging
A®@ < A® of the oscillator algebras whereas the algebt&sand A® remain unchanged.
This algebras’ exchange is equivalent just to exchange the parameters (7.9).
It is seen from (7.11) that iB = y then the polynomialg),, (k, m; N) areself-dual

Qprtk,m;a, B, B; N) = Qum(p, r; . B, B; N). (7.13)

This self-duality property is also obvious from the addition scheme, because the condition
B = y means thati, = as; hence, interchanging algebras?® and A® have the same
representation parameters.
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Note that from duality relation (7.11) for the polynomi@l,.(k, m; N) we can obtain
two independent recurrence relations for these polynomials which are dual analogies of the
difference equations (5.7) and (5.8). We will not write down these relations because they
are obvious.

8. Explicit expression for the symmetric case

In this section we consider a special ‘symmetric’ case when the algebras’ constants satisfy
the restriction
aidas = azas. 8.1)
Thené = 0, « = y and the generating function becomes
Y, v) =A+u)Q—v—au)’(1+ v —au)l. (8.2)
We can expand this function using the well known generating relation for the ordinary

Krawtchouk polynomials [18]
xX+y

, X+

A+2)A—T2) =) ( y) Ko(x; 750+ 3)2" (8.3)
n=0 n

wherex andy are some positive integers, is a positive parameter and the Krawtchouk

polynomials in argument have the expression

K,(x;t; M) =2F1<_i’]v;n;r+l). (8.4)
Note an obvious duality property

K,(x;t; M) = K((n; t; M). (8.5)
Now we can rewrite the generating functidn(u, v) in the form

W, v) = 1+uw) L—au)’(L—z/p)P(L+2) (8.6)
where

2= ala_g’;zu. (8.7)

Then we have successively

axl
W, v) = (14w (L= o))y <”;‘1) (1= o) ™" K (ps ar/az; p +q)(Bv)"

m=0

p+qg N—m _
= (p;;q> (Nk m)Km(p;al/aa;p+q)

xKi(p+q —m;az/ay; N — m)uk(,Bv)’". (8.8)

Thus from (8.8), (3.10) and symmetry property (8.5) of the Krawtchouk polynomials we
get the explicit expression for modified $ymbols:

r m k l
@,flqm = (az/a1) (Pn‘: ‘]) < : ) K,(m;ai/az; p+ q)Kpyq—m(k; az/ar; N —m). (8.9)

From (4.1) and (4.2) we obtain the expression for the corresponding polynomials
Qpr(k, m; N):

N — )N —m)! —m, — —k, —
Qs )= TN =) 2F1( fﬁn”;als/ag)zF1<m"’_ ;;alz/az). (8.10)

NI(N —r —m)!
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It is seen from (8.10) (or (8.9)) tha®,, (k, m; N) are indeed polynomials in two discrete
argumentsk, m. These polynomials are orthogonal with respect to the weight function
(4.21) where in the symmetric case

by — aias _ o
YT apas . A+ A A+
U . (8.11)
27 apms A+a)1+B) '
pie B P
aiz 1+8

It is interesting to note that the Krawtchouk polynomials (8.10) in two discrete variables
were studied by Prizva [13], who also found a generating function similar to (8.2). These
polynomials can also be obtained by a limiting process from the Hahn polynomials in two
variables found by Dunkl [25].

Perhaps the polynomials (8.10) provide the fiestplicit example of two-variable
orthogonal polynomials connected withj-8ymbols.  Surprisingly, a simple explicit
expression arises only for the symmetric case (8.1). The reason for this phenomenon is
yet unclear.

9. Y-symbols and Appell hypergeometric function

In this section we return to the general case of the representation paramédierss # 0 in
(3.10)). When one of the parametegrsy, r is equal to zero then it is possible to express the
corresponding §-symbols in terms of the Appell hypergeometric function in two variables.

Indeed, consider, for example, the case= 0. Then obviouslyp + r = N. Assume
additionally that

k4+m<r. (9.2)
Then we have the expansion
Y, v) =1 —v—auw)’(1+u+v)
_ Z (—au)" (—v)"2u/t (§v) /2 plr!

B nilnol(p —ny —n)! jol ol (r — j1 — Jjo)!

(9.2)

n1,n2, j1, j2

where summation is restricted by the conditions+ n, < p, j1 + j» < r. Introducing
discrete variables = n1 + j; andm = n, + j, we can rewrite the sum (9.2) in the form

W, v)= Y plri(=a)"(=1/8)"2u* (§v)"

nllnzl(k - nl)'(m - nz)'(p —ni — nz)!(r — k —m + ni + nz)' . (93)

ni,na.k,m

Under the restriction (9.1) we can transform (9.3) to

k m _ _ _ )\ n2
\y(u’v)zz rlu”(8v) Z( K)ny (=)0, (= Py, (—) " (—1/8) _ 9.4)

klm!'(r — k — m)! niln!(L4+r —k —m)p,4n,

k,m ni,ng

The inner sum in (9.4) can be expressed as

Z (_k)n]_ (_m)nz (_p)nﬁ-nz (—a)™ (_1/5)”2

nyln!(A+r —k — M)y 4ny
= Fi(—p,—k,—m,14+r —k —m; —a, —1/8) (9.5)

ni,nz



9j-symbols of the oscillator algebra 8351

whereFi(a, b, c, d; x, y) is the Appell hypergeometric function in two variablesy defined
by [26, vol 1]
(a)n1+n2(b)n1 (C)nzxnlynz

Fu@b.e.dix,y) = Z nilnol(d) g,

ni,nz

(9.6)

(generally the double sum in (9.6) is infinite; however if, as in our case, —M where
M is a positive integer then the sum is terminated).

Thus we have the explicit expression for the modifigds§mbols in this special case:
rlig™
K'm!(r —k —m)!
The Appell function F; has many nice properties (see, for example, the integral
representation in [26,vol 1]); however, in general it does not admit the expression in
terms of ‘more elementary’ functions of one variable. It would be interesting to find
an expression of gsymbols (in the general case of arbitrgpyq, r) in terms of more

complicated multivariable hypergeometric functions (say, Lauricella functions etc).

Note that the expression (9.7) is valid provided the restriction (9.1) is fulfilled. For
other regions of the parametérsandm one can also reduce the summation to the Appell
hypergeometric function; however, we will not write down the corresponding explicit
formulae here because they are obtained by almost the same procedure.

O = Fi(—p, =k, —m,1+r —k —m; —a, —1/95). (9.7)

10. Conclusion

We have obtained a simple generating function fgrs§mbols of the oscillator algebra.

This allows one to reconstruct many important properties of the polyno@iglé, m; N)

in two discrete variables: the weight function, the difference equation, the difference—
difference recurrence relations etc. We would like to mention an interesting property of the
polynomialsQ,, (k, m; N): they are eigenfunctions of two commuting difference operators

K; and K> (f-las (5.7) and (5.8)). This resembles the situation with completely integrable
many-particle systems where the corresponding eigenfunctions can be expressed in terms of
some orthogonal polynomials in several variables. These polynomials are eigenfunctions of
a set of commuting differential or difference operators, one of them being the Hamiltonian
of the system (see, e.g., [7]).

In general, we did not find a simple explicit representation for the polynomials
Qpr(k, m; N). Nevertheless, in the symmetric casgs = asaz a surprising simplification
emerges and the polynomiafs,, (k, m; N) can be written as a product of the two ordinary
Krawtchouk polynomials (formula (8.9)). The nature for such a simplification is puzzling,
because priori there are no arguments for why this symmetry condition is more preferable
among other possible restrictions.

There are other interesting questions connected with the general theory of orthogonal
polynomials (OPs) in two arguments. For example, it is well known that for the case of
one argument the weight function uniquely defines a system of a corresponding OP (up to
normalization constants). This is not the case for the OP in two (and more) arguments.
Indeed, the generic trinomial distribution (4.21) leads to quite different systems of OPs in
symmetric and non-symmetric cases (it is clear that the paranigtérs b3 remain arbitrary
in the symmetric case (8.11) excepting the restrictipft b, + b3 = 1). This phenomenon is
well known in the general theory of OPs in two variables (see, e.g., [26, vol 2]). However,
it would be interesting to investigate under which relations the system of OPs becomes
uniquely defined.
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Existence of the factorization chain for the polynomigls, (k, m; N) described by the
operator relations (5.1) and (5.2) is another nice property of the corresponding polynomials
allowing an explicit construction of the Rodriguez-type formula. Note that recently some
multivariate OPs (appearing in the theory of integrable systems) were shown to possess a
Rodriguez formula (see, e.g., [8]); however, as far as we know, the factorization method
was not exploited with respect to multivariate polynomials.

Existence of the duality property (7.11) is also an important property, which has an
exact analogue for the ordinary Krawtchouk polynomials.

Another interesting aspect is the appearance of the Appell hypergeometric fuigtion
in the expression of Bsymbols for the special choiee= 0. Note that in [27] §-symbols
of the SU(2) group were expressed in terms of some formal triple hypergeometric series.
One should expect that generig-8ymbols for the oscillator algebra are also expressible in
terms of some triple hypergeometric series, because the oscillator algebra can be obtained by
a simple contraction from the:(2) algebra [16]. We mention the interesting works [28, 29]
where some special classes of the Krawtchouk (and some other) multivariable polynomials
were expressed in terms of Lauricella polynomials

Note finally that in [30] and [31] some multivariate Racah polynomials were introduced
associated with the multiplicity free Racah coefficients for the Lie groyp). It would
be interesting to recognize possible connections with these objects. We believe, however,
that Krawtchouk polynomials connected with oscillator-8/mbols are not related with
polynomials introduced in [30] and [31], because the latter are invariant under permutation
of variables whereas our Krawtchouk polynomials do not possess such a property.
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